Shri Govind Guru University GODHRA

Syllabus of B. Sc. Semester - I PHYSICS (Theory & Practical)

(Based on NEP-2020) Effective from August, 2023

B. Sc. - Semester - I (PHYSICS)

MINOR (Theory):

BS23MN1PH1 : Fundamentals of Physics (Credit -2)

UNIT -1: Introduction to Classical Mechanics& Gravitation

1. Vector Algebra and Vector Analysis

- 1.0 Introduction
- 1.4 Product of two vectors
- 1.6 Definition of a vector in terms of its component
- 1.11 Triple Scalar Product
- 1.12 Reciprocal Vectors
- 1.13 Triple Vector Product
- 2.1 Differentiation of Vectors with respect to a scalar
- 2.2 Differentiation with respect to time, Velocity and Acceleration
- 2.3 Integration of vectors
- 2.4 Partial differentiation
- TextBook: Introduction to Classical Mechanics by R. G. Takwale& P. S. Puranik (Tata McGraw-Hill Publishing Co. Ltd.)
- Reference Book:Mathematical Methods in Physical Sciences by M. L. Boas Chapter6 (John Wiley &Sons)

2. Gravitation

- 6.1 Newton's Law of Gravitation
- 6.2 Gravitational Field
- 6.3 Gravitational Potential
- 6.12 Escape Velocity
- 6.13 Kepler's Law of Planetary Motion (All Three)

TextBook: Engineering Physics by R. K. Gaur & S. L. Gupta (DhanpatRai Publications)

UNIT – 2 Optics

1. Fermat's Principle and its Applications

- 2.1 Introduction
- 2.2 Fermat's principle of least time
- 2.3 Rectilinear propagation of light
- 2.4 Reversibility of light rays
- 2.5 Laws at reflection
- 15.2.1 Interference due to reflected light

15.6 Newton's ring

2. Laser

- 22.4 Interaction of light with matter Absorption
 - 22.4.1 Absorption
 - 22.4.2 Spontaneous emission
 - 22.4.3 Stimulated emission
- 22.7 Meeting the three requirements
 - 22.7.1 Population inversion
 - 22.7.2 2Metastable states
 - 22.7.3 Confining radiation within the medium
- 22.8 Components of LASER
 - 22.8.1 Active medium
 - 22.8.2 Pumping
 - 22.8.3 Optical resonant cavity
- 22.16 LASER beam characteristics
- 22.19 Applications
- Text Book: A text book of Optics by Dr. N. Subrahmanyam, Brijlal and Dr. M. N. Avadhanulu (S. Chand & Company Ltd. Publication)

Reference Books:

- 1. Fiber optics and optoelectronics by R. P. Khare, Oxford university press
- 2. An introduction to LASERS Theory and Applications by M. N. Avadhanulu, S. Chand & Company Ltd.
- 3. Optics Third Edition by Ajay Ghatak

UNIT: 3 Electric and Electronic Circuits

1. Rectifying Circuits & Filter Circuits

- 2.2 Half wave rectifier
- 2.8 Full wave rectifier
- 2.9 Bridge rectifier
- 3.1 The inductor filter
- 3.3 The capacitor filter
- 3.9.1 L-C filter

> Text Book: Electronic devices and circuits-an introduction by Allen Mottershead,

(Published by PHI Learning private Ltd., New Delhi)

2. AC Bridge

- 5.5 Condition for bridge balance
- 5.6 Maxwell bridge
- 5.8 Schering bridge

> Text Book: Modern Electronic Instrumentation and Measurement Techniques by

Albert D. Helfrick, William D. Cooper (Published by PHI Learning private Ltd., New Delhi)

B. Sc. - Semester - I (PHYSICS)

MINOR(Practical):Fundamentals of Physics Practical (Credit-2)

Minimum 8 practical must be performed

1. Newton's Ring.

To find the wave length of light of given monochromatic source

2. Cauchy's Constant.

To determine Cauchy's constant A and B graphically and to find the wavelength of unknown line of mercury spectrum.

3. 'g' by Bar pendulum.

To obtain the value of 'g' by bar pendulum.

4. To Determine Wave length of LASER light.

5. Refractive Index of Liquid using Convex Lens.

6. Half-Wave & Full-wave Rectifier.

Obtain load characteristic and %regulation for Full-wave rectifier with-out filter circuit and by using capacitor filter circuit. Determine ripple factor for Full wave rectifier without filter only.

7. Bridge Rectifier.

Obtain load characteristic and regulation for Bridge rectifier without using filter circuit and by using capacitor filter circuit. Obtain ripple factor without filter circuit.

8. Maxwell's Bridge.

To find the value of an inductance of an unknown inductor by using Maxwell's bridge circuit.

9. Series Resonance.

To determine the frequency of a.c. emf by series resonance circuit varying capacitor.

10. Parallel Resonance.

To determine the frequency of a.c. emf by parallel resonance circuit varying capacitor.

11. LDR Characteristics.

Obtain IV characteristics of given LDR and calculate its resistance. (For at least three different light levels).
